Tallurutiup Tariunga Inulik
Inuit Participation in Determining the Future of Lancaster Sound
Δ\text{όπου} A = \Delta \text{όπου} A

1.0 \text{όπου} A = \Delta \text{όπου} A

2.0 \text{όπου} A = \Delta \text{όπου} A

3.0 \text{όπου} A = \Delta \text{όπου} A

4.0 \text{όπου} A = \Delta \text{όπου} A

5.0 \text{όπου} A = \Delta \text{όπου} A

6.0 \text{όπου} A = \Delta \text{όπου} A

7.0 \text{όπου} A = \Delta \text{όπου} A

13

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

40
Table of Contents

Executive Summary ... i
1.0 Introduction to National Marine Conservation Areas 2
2.0 Why Lancaster Sound? ... 4
3.0 Current Context ... 6
4.0 Boundary Selection Process .. 6
5.0 Boundary Considerations .. 8
6.0 Beyond Project Feasibility .. 10
7.0 Conclusion ... 10

Appendix A - Inuit Qaujimajatuqangit Mapping 14
 Map 1: Communities and Inuit Owned Lands 15
 Map 2: Total Community Land Use Areas 16
 Map 3: High Value Hunting Areas Narwhal-Beluga Whale-Walrus 17
 Map 4: High Value Resource and Hunting Areas 18
 Map 5: Inuit Value Hunting Areas Polar Bear 19
 Map 6: Arctic Bay Land Use Narwhal .. 20
 Map 7: Pond Inlet Inuit Land Use Ringed Seal 21
 Map 8: Resolute Inuit TK Polar Bear-Walrus Ecology/Migration 22
 Map 9: Resolute Inuit TK Seabird Ecology/Migration 23
 Map 10: Archaeological, Historical and Present Day Seasonal Campsites 24

Appendix B - Federal Boundary Proposals and Existing Mineral Rights 26
 Map 11: Proposed Marine Park 2010 and Oil Leases 27
 Map 13: English Place Names .. 29

Appendix C - Recent Marine Mammal Science 31
Appendix D - References .. 49
ᐅᓇ ᐅᓂᒃᑳᐊᓕᐊᖅ ᒪᕐᕉᓐᓂ ᐱᔾᔪᑎᓕᒃ; ᓄᓇᕗᒻᒥ ᓄᓇᑖᕐᓂᕐᒧᑦ ᐊᑐᖅᑎᕆᐊᖅᑎᑦᑎᓗᓂ ᐱᕙᓪᓕᐊᔭᐅᓯᒪᔪᐃᑦ ᑲᓇᑕᒥ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᕕᒃᓴᐅᓇᓱᒃᑐᖅ (NMCA), ᐊᒻᒪ ᖃᐅᔨᒪᔮᑕᐅᓯᒪᔪᑦ ᑲᓇᑕᒥ ᒥᖑᐃᕐᓯ валᓕᕆᔨᒃᑯᓐᓂ, ᓄᓇᕗᑦ ᐊᒻᒪ ᖃᐅᔨᒪᔮᑕᐅᓯᒪᔪᑦ ᐃᓄᒃ ᖃᐅᔨᒪᔮᑕᐅᓯᒪᔪᑦ ᓴᐳᔾᔭᐅᓯᒪᕕᒃᓴᐅᓇᓱᒃᑐᖅ (NMCA) ᑲᓇᑕᒥ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᕕᒃᓴᐅᓇᓱᒃᑐᖅ.
This report has two purposes; to provide Nunavut Land Claims Beneficiaries with an introduction to the proposed Lancaster Sound National Marine Conservation Area (NMCA), and, to inform Parks Canada, the Government of Nunavut and those interested of Inuit perspectives on marine conservation.

This report explains what an NMCA is, the history surrounding interests in Lancaster Sound, the importance of where boundaries are suggested, and discussion on the realities of Inuit co-operative management in Nunavut. The report is a tool for North Baffin communities to help create an NMCA. QIA’s main plan is to work with communities to prepare a comprehensive set of maps depicting Inuit Qaujimajatuqangit.

This report provides a summary of Inuit land use and occupancy and recent marine mammal science. These combined ways of knowing can be used to define a common vision of conservation. One noteworthy feature of a NMCA is that once established, exploration and development of oil and gas will be prohibited.

Finally, and most importantly, while known to most Canadians as Lancaster Sound, Inuit refer to this region as Tallurutiup Tariunga. This report has been titled, Tallurutiup Tariunga Inulik, which means “Lancaster Sound has people” and also “Lancaster Sound has Inuit.” It is from the perspective of a homeland that QIA approaches discussions related to this great region.
1.0 钦驭四STCNAC

1.0.1 钦驭四

1.0.2 钦驭四

2.0 之

1970s 之

1) 之

2) 之
1.0 Introduction to National Marine Conservation Areas

National Marine Conservation Areas (NMCAs) are federally established marine conservation areas created under the Canada National Marine Conservation Areas Act (‘the Act’) (2002). As described under the Act an NMCA is meant to be representative of healthy marine ecosystems, in one of the marine regions of Canada, contribute to international efforts related to protected area establishment, consider implications for ecosystems in marine conservation area planning and management, provide opportunities for people to enjoy and appreciate natural and cultural marine heritage, recognize the social, cultural and economic well-being of coastal communities, provide opportunities for ecologically sustainable use of marine resources, promote research and monitoring, consider traditional ecological knowledge in marine planning and management, involve appropriate persons and bodies (such as land claim organizations and communities) in the effort to establish and maintain marine conservation areas.

Once established, NMCAs are intended to provide for sustainable management that meet the needs of present and future generations without compromise to the marine ecosystem. Furthermore, NMCAs are divided into zones which encourage ecologically sustainable use of marine resources as well as areas offering full protection special features and sensitive elements. NMCAs are managed or cooperatively managed by Parks Canada, which includes operational aspects such as visitation, education, resource management, research and monitoring initiatives, management plan development and review, and, the development of regulations supporting conservation area goals. Once created, a NMCA prohibits the exploration or exploitation of hydrocarbons, minerals, aggregates or any other inorganic matter.

Given the unique circumstances surrounding each proposed NMCA there is no predefined process guiding the establishment of a NMCA beyond fulfilling the following requirements: conducting meaningful consultations with Aboriginal people, local organizations and other appropriate parties, a mineral and energy resources assessment, an interim management plan with management objectives and zoning plans, and any agreements respecting the establishment of the area. The results of all of these tasks must be included in a report to Parliament before a NMCA can be designated under the Act.

The process to establish a NMCA in Nunavut involves three distinct phases; feasibility study, interim management plan development and Inuit
2) ᓴᐳᔾᔭᐅᓗᓂ ᐊᕙᑎᒋᔭᐅᔪᑦ ᐆᒪᔪᓄᑦ ᑐᑭᒧᐊᒍᑎᒃᑯᑦ ᓴᐳᔾᔨᒍᑏᑦ ᒪᓕᒡᓗᒋᑦ ᓈᒻᒪᒋᔭᐅᔪᒥᒃ ᑲᔪᔭᐅᒍᓐᓇᖅᑎᑕᐅᓗᑎᒃ;

3) ᐱᕙᓪᓕᐊᓂᖃᕐᓗᓂ ᐊᑐᒃᑲᓐᓂᒍᓐᓇᖅᑐᑦ ᑐᙵᕕᐅᓗᑎᒃ ᐱᕙᓪᓕᐊᓂᖃᕐᓗᓂ ᐊᑯᓂ ᑮᓇᐅᔭᓕᕆᓂᕐᒨᖓᔪᑦ ᑲᔪᔭᒡᓗᒋᑦ ᐃᓄᖕᓄᑦ ᐋᖅᑭᒍᓐᓇᕐᓗᑎᒃ ᐃᓄᐃᑦ ᐱᖅᑯᓯᑐᖃᖏᓐᓄᑦ;

4) ᑭᒡᓕᖃᖅᑎᓪᓗᒋᑦ ᐅᔭᕋᓐᓂᐊᕈᒪᔪᑦ/ᐃᑰᑕᕈᒪᔪᑦ ᖃᓗᐊᕐᔪᐊᒃᑰᖅᑎᑦᑎᓗᑎᒃ, ᑲᓇᑕᒥ ᖃᓗᐊᓕᕆᔨᒃᑯᑦ ᐱᔾᔪᑎᒋᓪᓗᖓ ᑲᓇᑕᒥ ᖃᓗᐊᕐᔪᐊᖃᕈᓐᓇᒐᔭᕐᓂᖓᓂᒃ Beauford-ᒥ ᖁᑦᑎᒃᑐᒥᓗ ᖃᓗᐊᕐᓱᐊᓗᐃᑦ ᐅᔭᕋᓐᓂᐊᓕᕆᔨᒃᑯᑦ;

5) ᐸᕐᓇᑕᐅᑦᑎᐊᖅᓯᒪᔪᒥᒃ ᐊᔾᔨᒌᒃᑐᒥᒃ ᐊᑐᒃᑲᓐᓂᒍᓐᓇᖅᑐᑦ ᐱᕙᓪᓕᐊᒍᑏᑦ ᐃᓅᓯᕐᒨᖓᔪᑦ ᐱᔾᔪᑎᒋᓪᓗᖓ ᑲᓇᑕᒥ ᖃᓗᐊᒥᔭᓕᕆᔨᒃᑯᑦ, ᐱᔾᔪᑎᒋᓪᓗᖓ ᐱᔾᔪᑎᒋᓪᓗᖓ ᑲᓇᑕᒥ ᖃᓗᐊᒥᔭᓕᕆᔨᒃᑯᑦ;

6) ᑲᓇᑕᒨᖓᓂᒃ, ᐊᑐᒃᑲᓐᓂᒍᓐᓇᙱᑦᑐᑦ ᑮᓇᐅᔭᓕᐅᕈᑏᑦ ᐱᒻᒪᕆᐅᑎᑦᑎᓪᓗᑎᒃ ᖃᖅᓯᓂᕐᒥᒃ ᖃᓗᐊᕐᔪᐊᒃᑰᖅᑎᑕᐅᔪᓐᓇᖅᑐᑦ ᐱᔾᔪᑕᐅᔪᑦ. 1986ᖑᑎᒍ, ᐊᑐᒃᑲᓐᓂᒍᓐᓇᖅᑐᑦ ᐱᔾᔪᑎᒋᓪᓗᖓ ᑲᓇᑕᒥ ᖃᓗᐊᒥᔭᓕᕆᔨᒃᑯᑦ (Harper et al., 1986).

1989ᖑᑎᒍ, ᐊᑐᒃᑲᓐᓂᒍᓐᓇᙱᑦᑐᑦ ᑮᓇᐅᔭᓕᐅᕈᑏᑦ ᐱᒻᒪᕆᐅᑎᑦᑎᓪᓗᑎᒃ ᖃᖅᓯᓂᕐᒥᒃ ᖃᓗᐊᕐᔪᐊᕆᒍᑎᒃᓴᖅ, ᐱᔾᔪᑎᒋᓪᓗᖓ ᑲᓇᑕᒥ ᖃᓗᐊᒥᔭᓕᕆᔨᒃᑯᑦ. ᑲᓇᑕᒥ ᖃᓗᐊᒥᔭᓕᕆᔨᒃᑯᑦ ᑲᓇᑕᒥ ᖃᓗᐊᒥᔭᓕᕆᔨᒃᑯᑦ.

3.0 ᓯᐊᒃᑯᐊ

Impact and Benefit Agreement negotiations. Parties to the feasibility process are QIA, Parks Canada and the Government of Nunavut. This report has been written in an effort to reaffirm QIA’s interest in supporting the creation of a Lancaster Sound NMCA. It is QIA’s intention that this report should inform the feasibility process and contribute to interim management plan (IMP) development and Inuit Impact and Benefit Agreement (IIBA) negotiations.

2.0 Why Lancaster Sound?

Beginning in the late 1970’s a series of events related to possible natural resource extraction demonstrated the complexity of relationships between natural and human environments within Lancaster Sound. Coming from these events, a series of public policy inquiries led by the federal government further examined the intricate considerations involved in the region, ultimately culminating in a Green Paper on Lancaster Sound (Dirschl 1982). The Green Paper concluded with the following six alternatives for the future use of the region:

1) No development of any kind, including park or conservation areas and renewable resource development;

2) Protection of the environment and biological resources through a strategy of matching conservation requirements with appropriate levels of protection;

3) Development of the renewable resource base that would support the long-term economic requirements of Inuit compatible with traditional pursuits;

4) Limiting industrial activities to shipping, such as development of the Northwest Passage as a year-round shipping route allowing Beaufort and high Arctic oil and gas to be transported to market;

5) Careful and planned balance of renewable and non-renewable resource development with regard to social and environmental impacts;

6) On the basis of national interests, non-renewable resource economy giving priority to the extraction and shipping of the region’s hydrocarbon and mineral resources within the context of existing regulatory processes.

In 1986, Parks Canada commissioned a report titled, A Biological, Geological, Oceanographic Study of the Lancaster/Eclipse Sound Region for the Purpose of Potential Marine Park Boundary Delineation (Harper et al., 1986). As evident from the title, the report focused upon examination of the Lancaster Sound region for the purpose of identifying and justifying potential boundaries for a potential marine park. It is important to note the contents of the report were substantially weighted towards the physical and biological features of the region, with limited observation of Inuit cultural, occupancy or harvesting elements. The report concluded by providing a series of options outlining potential boundaries along the western, eastern and southern reaches of Lancaster Sound.

In 1989, a detailed assessment of the feasibility of establishing a proposed national marine park in the Lancaster Sound region was commissioned and focussed on the non-renewable resource potential of the region (Smith et al., 1989). The report was developed in order to assess a body of information for the purpose of determining whether or not to establish a park, and if so where to locate boundaries. Though the report presents a number of conclusions about the resource potential and recommendations about future resource assessment approaches, the final statement was that there was sufficient information regarding the natural resource base in the region for the government to take a position on a boundary associated with a Lancaster Sound marine park proposal.
ᑎᓯᐱᕆ 2010ᒥ, ᐊᕙᒪᑐᖃᒃᑯᓪᓗᒋᑦ ᓴᖅᑮᓚᐅᖅᑎᑦᑎᒋᐊᖅᖢᑎᒃ ᑲᔪᖏᖅᓴᐅᑎᒥᒃ ᐱᓕᕆᖃᑎᒌᓐᓂᕐᒧᑦ ᴗᕇᐃᓯᖓᔪᓄᑦ ᑕᓪᓗᕈᒻᒥᑦ ᑲᓇᑕᒥ ᑕᕆᐅᖅ ᴗᐳᔾᔭᐅᓯᒪᕕᖕᒥ. ᐊᕙᒪᑐᖃᒃᑯᑦ ᓇᓗᓇᐃᖅᓯᒃᑲᓐᓂᓚᐅᕐᒥᔪᑦ ᐱᔫᐊᓗᓐᓂᐊᕐᓂᖅ ᑲᔪᓯᔾᔮᙱᓐᓂᖓᓂᒃ ᑐᑦᓯᕋᖅᑕᐅᑎᓪᓗᒍ ᑲᓇᑕᒥ ᒥᖑᐃᕐᓯᕐᕕᓕᕆᔨᒃᑯᓪᓗ ᐃᓗᐊᓂ ᐃᓱᒪᓕᐅᕆᕙᓪᓕᐊᖏᓐᓇᖅᑎᓪᓗᒋᑦ ᓴᖅᑭᒃᓯᓇᓱᒃᐸᓪᓕᐊᓂᒃᑯᑦ.

ᕿᑭᖅᑕᓂᒃᑯᑦ ᐃᑲᔪᖅᓱᖅᑐᐃᑦ ᖃᐅᔨᓴᖅᑕᐅᑎᓪᓗᒍ ᖃᐅᔨᓴᕈᑏᑦ, ᕿᑭᖅᑕᓂᕐᒧᑦ ᑲᓇᑕᒥ ᒥᖑᐃᕐᓯᕕᓕᕆᔨᒃᑯᑦ ᓴᖅᑮᓯᒪᕗᑦ ᐊᐅᓚᑦᑎᔩᑦ ᓄᓇᑖᕆᐊᕆᐊᔭᐅᔪᒃᓴᓂᑦ ᓯᕗᓂᒃᓴᒥ. ᓴᑎᐱᕆ ᑕᓪᓗᕈᑎᐅᑉ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᒍᓐᓇᕐᒪᖔᑦ ᓴᐳᔾᔭᐅᔪᖅ ᑕᓪᓗᕈᑎᐅᑉ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᒍᓐᓇᕐᒪᖔᑦ ᖃᐅᔨᓴᖅᑕᐅᓯᒪᒋᐊᖃᖅᖢᓂ.

4.0 ᐊᑐᓕᖁᔭᐅᓗᑎᒃ

ᑭᒡᓕᓕᐅᖅᐸᓪᓕᐊᓂᖅ ᐃᓱᒪᒋᔭᐅᑦᑎᐊᕆᐊᖃᖅᓯᒪᔪᖅ ᑲᓇᑕᒥ ᑕᕆᐅᖅ ᴗᐳᔾᔭᐅᓯᒪᕗᑦ ᓴᓇᓗᓂ ᖃᐅᔨᓴᕈᑏᑦ ᓇᓛᒎᖅᖢᑎᒃ, ᒐᕙᒪᑐᖃᒃᑯᑦ ᔖᒃᑯᐱᓕᐊᕐᔪᓂᑦ ᖃᐅᔨᓴᒋᐊᖅᐸᓪᓕᐊᓂᖅ ᖃᐅᔨᓴᕈᑏᑦ ᓇᓛᒎᖅᖢᑦ ᒐᕙᒪᑐᖃᒃᑯᑦ, ᐱᔫᐊᓗᓐᓂᐊᕐᓂᖅ ᑲᔪᓯᔾᔮᙱᓐᓂᖓᓂᒃ ᑐᑦᓯᕋᖅᑕᐅᑎᓪᓗᒍ ᑲᓇᑕᒥ ᒥᖑᐃᕐᓯᕕᓕᕆᔨᒃᑯᑦ ᓴᖅᑮᓯᒪᕗᑦ ᐊᐅᓚᑦᑎᔩᑦ ᓴᑎᐱᕆ ᑕᓪᓗᕈᑎᐅᑉ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᔭᖅᓯᒪᔪᑦ. ᖃᓄᐃᑦ ᖃᐅᔨᓴᕈᑏᑦ ᓄᓇᓕᖕᓂᑦ, ᖃᓄᐃᑦ ᖃᐅᔨᓴᕈᑏᑦ ᓄᓇᓕᖕᓂᑦ. ᕿᑭᖅᑕᓂᒃᑯᑦ, ᓄᓇᕗᑦ ᐊᕙᒪᒃᑯᖏᑦ ᓴᐳᔾᔭᐅᓯᒪᕗᑦ ᐊᐅᓚᑦᑎᔩᑦ ᓴᑎᐱᕆ ᑕᓪᓗᕈᑎᐅᑉ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᒷᑦ ᐊᐅᓚᑦᑎᔩᑦ ᓴᑎᐱᕆ ᑕᓪᓗᕈᑎᐅᑉ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᒷᑦ ᐊᐅᓚᑦᑎᔩᑦ ᓴᑎᐱᕆ ᑕᓪᓗᕈᑎᐅᑉ ᑕᕆᐅᖓ ᓴᐳᔾᔭᐅᓯᒪᒷᑦ ᐊᐅᓚᑦᑎᔩᑦ.

ᑐᒃᑯᐊ: NTI/Glenn Williams / ᐊᑐᓕᖁᔭᐅᓗᑎᒃ ᐊᒻᒪ ᐱᔭᕇᖅᓯᓇᓱᐊᖅᑎᓪᓗᒋᑦ ᓄᓇᕗᑦ ᐅᐃᓕᐊᒻᔅ
Evolving from the foundation of the Green Paper, the Lancaster Sound Regional Land Use Plan (LSRLUP) (1991) was developed for the purpose of defining the principles, objectives, and actions to guide land use activities in the region. The LSRLUP was superseded by the North Baffin Regional Land Use Plan (NBRLUP) (2000), a document which further defines the broad planning principles for the region. Included in the NBRLUP are several distinct provisions related to conservation, including the establishment of a northern concept of conservation and its importance. The NBRLUP also attempts to provide a process through which the development of new conservation areas can occur. Perhaps most importantly, the LSRLUP and the NBRLUP both recognize and affirm Lancaster Sound's interrelated environmental and sociocultural significance.

3.0 Current Context

On December 8, 2009 the QIA, the Government of Nunavut (GN) and Parks Canada (PC) signed a Memorandum of Understanding (MOU) to examine the desirability and feasibility of establishing a NMCA in the Lancaster Sound marine region. One of the features of the MOU is the provision that the federal government fund the participation of QIA through the process of NMCA creation.

In December 2010, following extensive internal discussions the federal Ministers of Environment, Natural Resources, Aboriginal Affairs and Northern Development and Health Canada announced a federal boundary proposal for the Lancaster Sound NMCA. Compared to previous federal boundary proposals the 2010 announcement is the most expansive. Appendix B of this report presents a series of federal boundary options, current boundary proposal as well as existing petroleum rights.

The December 2010 federal boundary proposal was released with a renewed commitment by the federal government to work towards the creation of a NMCA in Lancaster Sound. The federal government also confirmed that oil and gas exploration would not occur within the proposed Lancaster Sound NMCA area, nor within the final boundary as determined through the establishment process.

In order to support QIA’s activities related to the feasibility study, QIA and PC will sign a Contribution Agreement. Monies under the contribution agreement will be used to hire a project coordinator, cover the cost of travel, and meetings with local committees. QIA, GN and PC have established a Project Steering Committee which has developed a Terms of Reference and discussed project timelines.

It is anticipated the Lancaster Sound NMCA feasibility study will be concluded by December 2012 or early in 2013. The feasibility study requires that a boundary be recommended after appropriate studies are undertaken.

4.0 Boundary Selection Process

Defining a boundary is a key consideration in the establishment of a NMCA and a requirement of the feasibility process. Boundary selection requires consideration of several features such as; well-being and interests of communities, traditional ecological knowledge, ecologically sustainable use of living marine resources and mineral and energy potential.

As part of the feasibility process the federal government is updating a previous a Mineral and Energy Resource Assessment (MERA) to document the energy resource potential associated within the proposed conservation area. This review is being conducted within the boundaries defined in the most recent federal announcement. No new seismic or other information is being collected to complete the updated energy and resource potential assessment. Instead, the assessment is based on applying modern analytical methods to seismic information collected decades ago.
5.0

The document contains text in a language that is not easily identifiable from the raw text content. It appears to be a continuous block of text without clear headings or sections. The text is not legible in its current state and requires further analysis to provide a meaningful translation or interpretation.
The evolution of conservation planning in Lancaster Sound has resulted in a number of boundary options. Previous boundary options have primarily been weighted upon physical geography, biology and resource potential, but QIA hopes to arrive at a boundary that will include consideration for Inuit occupancy and conservation preferences. In an effort to further the feasibility study process, QIA has assembled a collection of maps derived from QIA’s Inuit Qaujimajatuqangit database (see Appendix A). The maps provide direct insight into how Tallurutiup Tariunga has been, and continues to be used by Inuit. These maps and others will be used by QIA during the feasibility process to document with community members current land use practices. Community mapping sessions and discussions will be used by QIA to help determine where the boundaries for the Lancaster Sound NMCA should be placed.

QIA is also aware there has been a great deal of marine mammal science undertaken since the last comprehensive report by the federal government. Knowing the value of this information as it relates to natural resource evaluations, QIA has prepared a basic overview of recent species specific research (see Appendix C). It is QIA’s ambition to see this research applied to the feasibility processes and final boundary selection.

5.0 Boundary Considerations

Although the federal government announced a proposed boundary for the Lancaster Sound NMCA in December 2010, it is important that it be understood as a proposal, subject to further refinement during the feasibility process. The federal boundary proposal should also be understood as one of the most extensive conservation area proposals ever presented for this Lancaster Sound region.

Before determining the final boundaries, there are some key factors to consider. A final NMCA boundary requires community consultations as well as information from a number of key sources including Inuit Qaujimajatuqangit, biological sources, geographical considerations and mineral and resource potential. Given the historical and recent attention placed on better understanding Lancaster Sound, it is reasonable to assume many of the informational requirements associated with feasibility study determinations have already been fulfilled and are regional in nature.

Even though federal authorities concluded that no additional information collection would be required to properly assess the energy potential of the study area, the current energy review has been limited to the area within the December 2010 federal boundary proposal announcement. It is important to note that while many of the information sources contributing to the feasibility study are amendable to changes in boundary proposals, the energy assessment results may not be as flexible.

It is important to recognize that the boundaries put forth in a feasibility study can be subject to alteration. Although the feasibility process requires a boundary be selected, once created the Act allows for future expansion of a NMCA where supported by necessary studies and agreements. Additionally, the Act also allows for reductions from the boundary area based on consent from Parliament. Finally, a condition of NMCA creation is that ownership of all areas reside with the Crown, meaning a NMCA can only contain areas to which there are no third party rights.

The Act requires that the conservation area include zones within the boundaries, which must include at least one zone that fosters and encourages sustainable use of marine resources and at least one zone that fully protects special features or sensitive elements of ecosystems. The conservation area may also include other types of zones. The requirement for agreed upon zones is an element that will require significant contemplation and input by Inuit within the boundaries.
6.0 Application of the Act of August 9, 1942

The Act of August 9, 1942, applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945.

1. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945.

2. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945.

3. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945.

4. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945.

5. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945. The amendments made in 1945 to the Land Law of 1942, which were in force on August 9, 1942, were applied to the Land Law of 1942, in the section of the Land Law that was enacted in 1942, with the amendments made in 1945.
6.0 Beyond Project Feasibility

Once the feasibility study for a NMCA is complete (including boundary selection), the President of QIA and federal and territorial ministers will review the feasibility study results for the purpose of determining whether to formally recommend NMCA establishment. If all parties recommend NMCA establishment, the project will move ahead into interim management plan (IMP) development and IIBA negotiations.

An IMP is a tool that will define the NMCA goals and objectives from an operational perspective. The IMP is likely to contain the following elements; park purpose, park vision, management principles, interim goals, interim zoning, and strategic operational actions. It is anticipated that elements of this plan will be considerably informed by and developed during the feasibility process.

As required by Article 8 of the Nunavut Land Claims Agreement, prior to establishment a NMCA requires the ratification of an IIBA. Included in an IIBA are features such as: training, hiring, scholarships, business opportunities, language, access to services and facilities, outpost camps, and active information flow. Although a NMCA currently does not exist in Nunavut, there is considerable experience in the areas of national park management and IIBA implementation. It is anticipated negotiations will draw from current experiences with IIBAs negotiated in relation to national parks.

Recently, QIA and Parks Canada hired a consultant to prepare the following report: 7-Year Independent Evaluation of the Inuit Impact and Benefit Agreement for Auyuittuq, Quttinnirpaq and Sirmilik National Parks (“7-Year Independent Evaluation”). The 7-Year Independent Evaluation concluded that:

1. Parties revisit the entire approach to the Joint Park Management Committee Secretariat, particularly in light of a possible additional IIBA’s in the near future.
2. Additional capacity needs to handle National Park related responsibilities and provide required support.
3. Expectations for implementation have to be tied to objectives in the IIBA. In other words, there should be a mind-set among partners to reach the highest level of implementation standards, not the lowest. This is particularly important regarding park management and business planning.
4. Employment of Inuit must be improved. Right now, there are few Inuit in scientific and professional positions and a few only in technical roles.
5. The process of implementation has generally resulted in good working relationships between the parties and the communities. This experience should help in allowing the parties to look at challenges and on-going problems in a constructive way.

It is QIA’s perspective that once IIBA discussions in relation to the NMCA are initiated, the content and conclusions of the 7-Year Independent Evaluation will need to be taken into consideration. The challenge for this portion of NMCA establishment will be the degree to which parties are able to address previous IIBA implementation shortcomings.

7.0 Conclusion

Though long a homeland to Inuit, Tallurutiup Tariunga has often been the subject of intense debate over how to best plan for the future of this region. The proposed Lancaster Sound NMCA arrives at a time of increased awareness over the Arctic, often framed in the order of sovereignty, environment, and Inuit.
7.0 ᓮᖅᑲᕈᑎ

ᐊᑯᓂ ᐃᓄᖕᓄᑦ ᐊᖏᕐᕋᕆᔭᐅᓯᒪᒐᓚᐅᖅᑎᒍ, ᑕᓪᓗᕈᑎ ᖃᓄᖅ ᐸᕐᓇᑕᐅᑦᑎᐊᕈᓐᓇᕐᒪᖔᑦ ᐃᓄᐃᑦ, ᐊᒡᒃᓗᐊᓂᐊᕈᓐᓇᕐᒪᖔᑦ. ᐊᖏᕐстраиваᕆᔭᐅᓯᒪᒐᓚᐅᖅᑎᒍ, ᑕᓪᓗᕈᑎ ᖃᓄᖅ ᐸᕐᓇᑕᐅᑦᑎᐊᕈᓐᓇᕐᒪᖔᑦ ᐃᓄᐃᑦ, ᐊᒡᒃᓗᐊᓂᐊᕈᓐᓇᕐᒪᖔᑦ. ᐊᖏᕐ铩 właśᕆᔭᐅᓯᒪᒐᓚᐅᖅᑎᒍ, ᑕᓪᓗᕈᑎ ᖃᓄᖅ ᐸᕐᓇᑕᐅᑦᑎᐊᕈᓐᓇᕐᒪᖔᑦ ᐃᓄᐃᑦ, ᐊᒡᒃᓗᐊᓂᐊᕈᓐᓇᕐᒪᖔᑦ. ᐊᖏᕐ铩崀 właśᕆᔭᐅᓯᒪᒐᓚᐅᖅᑎᒍ, ᑕᓪᓗᕈᑎ ᖃᓄᖅ ᐸᕐᓇᑕᐅᑦᑎᐊᕈᓐᓇᕐᒪᖔᑦ ᐃᓄᐃᑦ, ᐊᒡᒃᓗᐊᓂᐊᕈᓐᓇᕐᒪᖔᑦ. ᐊᖏᕐ铩虻 właśᕆᔭᐅᓯᒪᒐᓚᐅᖅᑎᒍ, ᑕᓪᓗᕈᑎ ᖃᓄᖅ ᐸᕐᓇᑕᐅᑦᑎᐊᕈᓐᓇᕐᒪᖔᑦ ᐃᓄᐃᑦ, ᐊᒡᒃᓗᐊᓂᐊᕈᓐᓇᕐᒪᖔᑦ. ᐊᖏᕐ铩虻 площᕆᔭᐅᓯᒪᒐᓚᐅᖅᑎᒍ, ᑕᓪᓗᕈᑎ ᖃᓄᖅ ᐸᕐᓇᑕᐅᑦᑎᐊᕈᓐᓇᕐᒪᖔᑦ ᐃᓄᐃᑦ, ᐊᔾᔨᐅᖏᑦᑑᕋᓂᒃ ᓴᐳᔾᔨᔾᔪᑎᒃᓴᒧᑦ ᐊᑐᒃᑲᓐᓂᒍᓐᓇᖅᑐᓂᑦ ᐃᓄᖕᓂᓗ ᑲᕙᓪᓕᐊᑎᑦᑎᓗᓂ ᓴᖅᑭᒍᒪᔭᖓᒍᑦ ᐊᐅᓚᒍᒪᔭᖓᒍᓪᓗ. ᑲᓇᑕᒥ ᑕᕆᐅᕐᒥᒃ ᓴᐳᔾᔭᐅᓯᒪᕕᒃ ᐊᑐᕆᐊᓕᖏᑦ ᐱᒋᐊᖃᕆᕗᖅ ᐃᓄᐃᑦ ᖃᐅᔨᒪᔭᑐᖃᖏᓐᓂᒃ ᐃᓚᐅᑎᑦᑎᓗᓂ ᐱᕕᖃᖅᑎᑦᑎᓗᓂ ᓄᓇᓖᑦ ᓴᐳᔾᔨᓂᕆᒍᒪᓯᒪᔭᖏᓐᓂᒃ. ᑲᓇᑕᒥ ᑕᕆᐅᖅ ᓴᐳᔾᔭᐅᓯᒪᕕᖕᒧᑦ ᐊᔾᔨᐅᖏᑦᑑᕗᖅ ᓴᐳᔾᔨᔾᔪᑎᒃᓴᒥᒃ ᐊᑐᖅᑎᑦᑎᒍᓐᓇᕐᓗᓂ ᐊᑐᒃᑲᓐᓂᒍᓐᓇᖅᑐᓂᑦ ᐃᓄᖕᓂᓗ ᑲᕙᓪᓕᐊᑎᑦᑎᓗᓂ ᓴᖅᑭᒍᒪᔭᖓᒍᑦ ᐊᐅᓚᒍᒪᔭᖓᒍᓪᓗ.
As Appendices A, B and C will demonstrate, Tallurutiup Tariunga is home to an abundance of species that frequent the area, often seasonally, in high densities. Protection of this area through the establishment of a NMCA would be a significant step forwards in acknowledging the significance of this region to Inuit, while also reducing known threats to the species that inhabit these waters.

As the report demonstrates, boundary lines alone will not result in a comprehensive approach to conservation. Lancaster Sound is a representative area with uniquely high concentrations of species, which also coincides with known physical and geographical features within an Inuit homeland. True conservation of this area requires a cooperative management approach that incorporates broader perspectives of species life cycles and interrelated conservation measures.

Approaches to conservation initiatives in Lancaster Sound, are placed into a larger context of national interests, such as transportation routes, and, access to potential resources. The current formula of a proposed NMCA is unique in that it offers a type of conservation that permits the use of renewable resources while also promoting a role for Inuit to directly influence its creation and eventual management features. The NMCA process also requires integration of Inuit Qaujimajatuqangit and offers opportunities to directly apply community preferences in a conservation setting.

It is QIA’s intention, in conjunction with the Project Steering Committee, to visit the five north Baffin communities of Arctic Bay, Pond Inlet, Clyde River, Resolute Bay and Grise Fiord in order to discuss what the proposed Lancaster Sound NMCA offers Inuit and to determine how Inuit interests can best be achieved. Prior to a final feasibility study report, the items found in this report will be used to answer a question first posed in the 1980’s; what is the best plan for Lancaster Sound?

Finally, one particular challenge will be determining what the most effective management structure and programs can be for a NMCA. QIA and Parks Canada have learned a great deal from past IIBA’s; it is now a question of how that knowledge can be put to use in the creation of Nunavut’s first NMCA.
DALI D: 1975-1985

- Dalai Lama, The Mind of Freedom, 1996
- Kalu Rinpoche, The Path of Liberation, 1985
- The Dalai Lama's Teachings on The Mind of Freedom, 1997
- The Dalai Lama's Teachings on The Art of Happiness, 1999
- The Dalai Lama's Teachings on The Path of Liberation, 1995

- Dalai Lama's Teachings on The Mind of Freedom, 1996
- Kalu Rinpoche, The Path of Liberation, 1985
- The Dalai Lama's Teachings on The Mind of Freedom, 1997
- The Dalai Lama's Teachings on The Art of Happiness, 1999
- The Dalai Lama's Teachings on The Path of Liberation, 1995

- Dalai Lama's Teachings on The Mind of Freedom, 1996
- Kalu Rinpoche, The Path of Liberation, 1985
- The Dalai Lama's Teachings on The Mind of Freedom, 1997
- The Dalai Lama's Teachings on The Art of Happiness, 1999
- The Dalai Lama's Teachings on The Path of Liberation, 1995

- Dalai Lama's Teachings on The Mind of Freedom, 1996
- Kalu Rinpoche, The Path of Liberation, 1985
- The Dalai Lama's Teachings on The Mind of Freedom, 1997
- The Dalai Lama's Teachings on The Art of Happiness, 1999
- The Dalai Lama's Teachings on The Path of Liberation, 1995
Appendix A: Inuit Qaujimajatuqangit Mapping

Appendix A, *Inuit Qaujimajatuqangit Mapping* presents materials drawn from the Inuit Land Use and Occupancy Project (ILUOP). The materials presented represent a small portion of the entire collection related to the Lancaster Sound region. The maps presented have been selected in order to demonstrate the general breadth and depth of Inuit Qaujimajatuqangit within the area. The ILUOP materials presented in this report contain Inuit land use and knowledge that extends back more than 60 years prior to the 1975 collection date. The collection contains interviews and maps for over 500 individual Inuit hunters and another 100 maps from individual or group interviews on Inuit knowledge of the physical environment and wildlife ecology.

A number of maps are presented in Appendix A based on common themes such as; travel routes, place names, archaeological sites, harvesting areas and species specific maps. Although each theme represents a summary map, additional materials exist and can be applied to the proposed NMCA depending on the intended purpose. It is QIA’s intention to use these maps as a basis from which North Baffin communities can contribute to feasibility process content development and boundary determinations. It is QIA’s vision these maps be used to conduct further community mapping exercises, leading to more information being gathered from community members in an effort to expand the breadth of Inuit knowledge in the Lancaster Sound region.

This component of QIA involvement in the NMCA processes is centered on four basic principles that will ensure the role of Inuit knowledge and participation in the NMCA feasibility process;

- Inuit leadership recognizes that both the immediate objectives of the feasibility study as well as the longer term objectives for the co-management of the Lancaster Sound region requires access to high quality and reliable information that is derived from the integration and application of different systems of knowledge.
- Inuit collective knowledge, experience and skills associated with the traditional and present day use and value of the marine, fresh water, land and wildlife resources of Lancaster Sound and its surrounding territory will be an essential source of this information.
- Maps are one of the most important tools to collect Inuit Qaujimajatuqangit and make it available for direct and sustained participation of Inuit in the integrated planning of the Lancaster Sound NMCA.
- The participatory framework governing the NMCA must recognize the importance of establishing protocols on the sharing of map-based and related information and on implementing measures to expand Inuit capacities for the collection, processing and application of Inuit Qaujimajatuqangit at the community and regional organization levels.

Observation of these four basic principles will ensure the best possible balance between the need to define, protect and manage the resources of Lancaster Sound.
Lancaster Sound High Value Hunting Areas
Narwhal-Beluga Whale-Walrus
(ILUOP – 1974-1975)
Lancaster Sound High Value Resource and Hunting Areas (ILUOP - 1974-1975)

Resolute Bay
Arctic Bay
Pond Inlet
Igloolik
Hall Beach

Legend:
- Duck
- Geese
- Loon
- Ptarmigan
- Seabirds

Scale: 1:4,000,000

0 50 100 Km
Lancaster Sound Archaeological, Historical and Present Day Seasonal Camp Sites
(ILUOP – 1974-1975)
Appendix B: 2010 Boundary Proposal, Previous Boundary Options and Existing Petroleum Rights

Appendix B, *Federal Boundary Proposal and Existing Mineral Rights*, contains a selection of maps depicting previous conservation area proposals within the Lancaster Sound region. These maps provide an indication for where conservation interests have been focused relative to known marine mammal science and natural resource potential.
Beluga (*Delphinapterus leucas*) (_polygonal_)

The Beluga is a large, marine, toothless, whale-like cetacean with a distinctive coloration. It is found in the Arctic and Bering Seas, and is highly valued for its meat and oil. The species was first described by the Russian naturalist Caspar Platonovich Luskin in 1781. The Beluga is a highly social animal, often seen in groups known as *'phalanxes'.*

The Beluga is known for its remarkable ability to communicate with both humans and other Beluga whales. Its vocalizations include whistles, which are used for socialization and communication, and grunts, which are used for sonar-based communication with other whales. The Beluga's diet consists mainly of fish, crustaceans, and other marine invertebrates. It is an important part of the Arctic ecosystem and plays a crucial role in the balance of the food web.

This species is listed as Near Threatened on the IUCN Red List, due to its slow reproduction rate and habitat degradation. Conservation efforts are being made to protect the Beluga, including the establishment of marine protected areas and the implementation of sustainable harvesting practices.

References:

Images:

1. A group of Beluga whales swimming in the Arctic Sea.
2. A Beluga whale calf with its mother.
3. A Beluga whale using its echolocation abilities to navigate underwater.
4. A Beluga whale vocalizing its unique whistles.

C. A. C. J. O. *Beluga (Delphinapterus leucas)*
Appendix C, *Recent Marine Mammal Science* contains an update and expansion of the knowledge base for marine mammals in the Lancaster Sound area since the initial 1986 Parks Canada report (Harper et al., 1986). This section summarizes marine mammal research by species including a brief description of geographical distribution, population size if known, and threats to their continued use of the area.

It is anticipated that the overview provided in this report, and the associated source documents will be used to enhance the body of knowledge and findings of the NMCA feasibility process.

Beluga (*Delphinapterus leucas*)

The beluga is a semi-circumpolar cetacean commonly inhabiting Canadian, American, Russian, and Greenland waters. There are twenty two populations worldwide (DFO 2010) with seven populations found in Canadian waters seasonally and year round (COSEWIC 2004). The Eastern High Arctic/Baffin Bay population is present in the Arctic year round inhabiting the Canadian Arctic archipelago in the vicinity of Lancaster Sound in summer and winters between Canada and Greenland in winter (NAMMCO 2005). This population was designated ‘Special Concern’ by COSEWIC in 1992 and 2004 due to uncertainties about stock separation and hunting pressure in portions of the populations range (COSEWIC 2004). This population may consist of two or more management stocks based on genetic information and wintering locations (de March et al. 2002).

The Eastern High Arctic/Baffin Bay population is known to winter in north Baffin Bay between the west coast of Greenland and the Canadian archipelago amongst heavy pack ice (Smith and Martin 1984; Doidge and Finley 1993). Some belugas from this population, a larger number than was previously suspected (approximately 13,000 according to Heide-Jørgensen and Laidre (2004)), are also known to winter in the leads and polynyas, commonly referred to as the North Water, between North West Greenland and Devon and Ellesmere Islands (Richard et al. 1998; Heide-Jørgensen et al. 1998; Richard et al. 2001). Heide-Jørgensen et al. (2003) estimate that less than fifty percent of the total population winters in West Greenland with the rest inhabiting polynyas and leads in the North Water.

Summering areas in the Lancaster Sound area are known to be in Peel Sound, Barrow Strait, Prince Regent Inlet, and Lancaster Sound itself (COSEWIC 2004). Migration to wintering grounds begins in early fall, peaking in mid September, through Lancaster Sound along the south and east coast of Devon Island (Koski and Davis 1980; Smith and Martin 1994; Richard 1998; Richard et al. 2001; Steward 2001; Heide-Jørgensen et al. 2003). Koski and Davis (1980) observed fall migration through Lancaster to occur rapidly, taking place over a period of two to three days. From wintering grounds, the beluga’s return trip in the spring follows the receding ice and leads to the floe edge of Lancaster Sound. Belugas have been seen from aerial surveys at the Lancaster Sound floe edge in May and June (Smith et al. 1985) with the earliest reported sighting of calves in the area on May 31 (Cosens and Dueck 1990).

The Lancaster Sound area is known to be an important summering ground for belugas, particularly along the south and east coasts of Devon, the south coast of Cornwallis Island and around Somerset Island (Heide-Jørgensen et al. 1998). Belugas are considered to have high site
Narwhal (Monodon monoceros) (プツグソウシシロクマのウミガメ)

The narwhal is an endangered species due to the large demand for its tusk in the Far East. The tusk is made of bone and is about 1.8 m long. The narwhal’s primary subspecies, Monodon monoceros, is found in the Arctic Ocean.

The narwhal is a toothed whale and is related to the sperm whale. It is primarily known for its long, spiral tusk, which is actually a modified upper incisor. The tusk is used for both self-defense and courtship displays.

The narwhal is a solitary animal, spending most of its time alone. It feeds mainly on fish and squid, and its diet varies with the season and location.

The narwhal is an important species in indigenous culture, particularly in the Inuit communities of the Arctic.

The narwhal was first described by the Swedish naturalist Carl Linnaeus in 1758. Its scientific name, Monodon monoceros, means “single-tusked animal.”

The narwhal is listed as an endangered species by the International Union for Conservation of Nature (IUCN).

Scientific Information:

- **Common Name:** Narwhal
- **Scientific Name:** Monodon monoceros
- **Family:** Monodontidae
- **Order:** Cetacea
- **Class:** Mammalia
- **Phylum:** Chordata

Distribution:

The narwhal is found in the Arctic Ocean, primarily in the Bering Sea, Chukchi Sea, and Beaufort Sea.

Threats:

The narwhal faces several threats, including climate change, habitat loss, and overharvesting. The tusk is highly valued in Asia, and illegal hunting is a significant threat.

Conservation Efforts:

Various conservation measures have been implemented to protect the narwhal, including estableishing protected areas, limiting human activities in its habitat, and monitoring its population.

References:

fidelity to seasonal habitats (Heide-Jørgensen et al. 2003), visiting the same areas each year, and select habitat based on factors including ice concentrations and water depth (Barber et al. 2001). They are known to frequent warm water estuaries that assist with the moulting process (Watts et al. 1991; Smith et al. 1992; Smith and Martin 1994), and deep offshore areas and bays, presumably for feeding, in the summer and fall seasons (Martin and Smith 1992; Smith and Martin 1994; Richard 1998). Major congregations in the area have been observed in the following areas: Maxwell and Croker Bays on the south coast of Devon Island; Elwin, Batty, Garnier, and Creswell Bays as well as Cunningham Inlet on the north and east sides of Somerset Island; an estuary north of Wadworth Island on the west side of Somerset Island in Peel Sound; Coningham, Willis and Transition Bays on Prince of Whales Island in Peel Sound; and a number of river estuaries on the northern portion of the Brodeur Peninsula (Smith et al. 1985; Smith et al. 1992; Doidge and Finley 1993; Smith and Martin 1994; Richard 2001). The Franklin Trench, in southern Peel Sound, has also been documented to be used daily by beluga in nearby Coningham Bay (Smith and Martin 1994; Richard 2001). According to Pond Inlet residents, some beluga summer in Eclipse Sound, Milne Inlet and Koluktoo Bay with calving occurring in the latter two areas as well as the southern portion of Navy Board Inlet (Stewart 2001).

The most recent population estimate for the Baffin Bay beluga was published in 2002. Innes et al. (2002) estimated the population at 21,231 (95% CI 10,985 to 32,619) animals derived from visual and photographic surveys in Prince Regent Inlet, Peel Sound and Barrow Strait in 1996, corrected for observer and availability bias. Belugas have been seen to travel in groups of one-to-two-hundred animals in the region with an average group size of 3.8 (Cosens and Dueck 1991). Cosens and Dueck (1991) noted that beluga group size varied with ice type with the largest groups being seen later in break up within cracks in the ice and pan ice.

Potential threats to beluga in the area include increased disturbance from shipping (DFO 2010), bioaccumulation of contaminants (Doidge and Finley 1993), water pollution, noise pollution (Cosens and Dueck 1990), competition from commercial fisheries (DFO 2010) in Baffin Bay, and climate change (Tynan and DeMaster 1997, Laidre et al. 2008). Cosens and Dueck (1990) suggest that any increase in shipping traffic in Lancaster Sound should account for the presence of young early in the season as the potential effects of underwater noise on calves are unknown and may alter the ability of mothers and calves to communicate.

Narwhal (Monodon monoceros)

The narwhal is a medium-sized toothed whale with a semi-circumpolar distribution, inhabiting European and eastern Canadian Arctic waters north of 60° latitude. Based on geographic summering locations, there are three narwhal populations globally. The most abundant, referred to as the Baffin Bay population, is located in the High Arctic in waters neighboring Canada and Greenland. Although currently managed as one population, additional stock separation based on summering location, migration timing and wintering areas has been suggested for management purposes (Dietz et al. 2008). The Baffin Bay population inhabits the eastern Canadian Arctic archipelago and waters off northwest Greenland in summer and Baffin Bay and Davis Strait in winter (DFO 1998). This population was designated ‘Special Concern’ by COSEWIC in 2004 due to uncertainty about population size, life history parameters, and sustainable harvest levels (COSEWIC 2004). It was previously designated in 1986 and 1987 as ‘Not at Risk’.

Similar to the beluga, narwhal have high site fidelity and return to the same locations in the Arctic year after year (Heide-Jørgensen et al. 2003; Laidre et al. 2004a), making high use areas important habitat. Although little is understood about specific habitat
C. Parkinson, Barrow Strait, Peel (1994). 3,000 km N of Barrow Strait (HCD 2002).
needs, it is known that narwhals prefer deep water in both summer and winter. In summer, narwhals range in coastal areas with both deep water and shelter (Richard et al. 1994; Kingsley et al. 1994). In the Lancaster region narwhals are present in the areas of Prince Regent Inlet, Barrow Strait, Peel and Eclipse Sounds and Admiralty Inlet (Richard et al. 1994). Winter is spent farther offshore in Baffin Bay and Davis Strait (Heide-Jørgensen et al. 2002; Heide-Jørgensen et al. 2003).

Narwhals arrive from Baffin Bay at the Lancaster Sound floe edge in May and June (Heide-Jørgensen et al. 2003) with the earliest reported sighting of calves in Lancaster Sound on May 27 (Cosens and Dueck 1990). Finley and Gibb (1982) noted narwhals feeding at the Pond Inlet ice edge in June. Narwhals migrate through Pond Inlet into Eclipse Sound and through Lancaster Sound into western regions as the ice breaks and leads form (Finley and Gibb 1982). Narwhals stay in the area from July through to September (Laidre et al. 2002) and are noted to be abundant in Prince Regent and Admiralty Inlets (Richard et al. 1994), as well as Eclipse Sound (Finley and Gibb 1982) in late summer. Studies have noted that narwhals visit more than the few fjords south of Eclipse Sound noted in the literature. They are known to visit all fifteen fjords south of Eclipse Sound on Baffin Island during the summer season (Remnant and Thomas 1992 as cited by Dietz et al. 2001).

Migration out of the Canadian archipelago into Baffin Bay has been recorded to take place in stages, based on summering areas (Dietz et al. 2008), over approximately a one month period (Koski and Davis 1980; Dietz et al 2008). Narwhals tracked from summering grounds in Admiralty Inlet followed the south coast of Lancaster Sound during migration (Dietz et al. 2008) whereas, whales tagged near Somerset Island moved west on the north side of the Sound, following the south shore of Devon Island (Heide-Jørgensen et al. 2003). Whales summering in the Eclipse Sound area migrate easterly through Pond Inlet, south of Bylot Island and Lancaster Sound, into Baffin Bay (Dietz et al. 2001). Koski and Davis (1980) noted in a survey taken in 1974, that fall migration out of Milne Inlet and Eclipse Sound began between September ninth and thirteenth. Highest densities at this time of the year were observed in Pond Inlet, while Milne Inlet and Tay Sound were considered to have medium densities, and Navy Board Inlet and Eclipse Sound showing low densities (Koski and Davis 1980).

The return trip south, to the dense pack ice of Baffin Bay and Davis Strait, through Lancaster and Eclipse Sounds occurs in September and October (Laidre et al. 2002), arriving in their winter range in late October to early November (Heide-Jørgensen et al. 2002; Heide-Jørgensen et al. 2003). Analysis of satellite tracking studies have suggested that whales summering in Eclipse Sound, Admiralty Inlet and Melville Bay have overlapping winter ranges in southern Baffin Bay and northern Davis Strait, where as those summering in the Somerset Island area winter further north in Baffin Bay (Dietz et al. 2008). Wintering grounds have been documented to be associated with the continental slope in Baffin Bay and Davis Strait (Dietz et al. 2001; Dietz and Heide-Jørgensen 1995). Narwhals travel up to 3,000 km over the course of the year to and from seasonal grounds (Heide-Jørgensen et al. 2002).

Satellite tracking studies in the Canadian archipelago have shown that the narwhal, one of the deepest diving cetaceans, increase their diving depths between summer and fall, reaching depths in excess of 1,000 m (Dietz et al. 2001; Heide-Jørgensen et al. 2001) in their wintering grounds. Narwhals have been observed to congregate in deep water zones, in depths exceeding 350 meters, in the Lancaster region in the summer months (Richard et al. 1994). Richard et al. (1994) suggests that their preference for deep water may be linked to feeding. Deep water fish, including polar cod (Arctogadus glacialis) and Greenland halibut (Reinhardtius hippoglossoides), have been found in analyses of narwhal stomach contents (Finley and Gibb 1982). The narwhal Baffin Bay stock is estimated to be in excess of 60,000 with the largest groups present in
Bowhead (Balaena mysticetus) (ᕐᒃᑯᐊ)

Bowhead (*Balaena mysticetus*) (ᐊᕐᕕᒃ) ᐊᖏᓂᕐᐹᖑᖃᑕᐅᒻᒪᑦ ᑕᕆᐅᖑᔫᓐᓄᑦ ᐆᒪᔪᓄᑦ ᐃᑭᐅᖅᑕᖅᑐᒥ ᐃᒪᕉᔪᐃᑦᑐᓂᑦ. ᓇᒥᑐᐃᓐᓈᖅᑐᑦ, ᑕᐃᒫᔅᓴᐃᓐᓇᖅ ᐃᓕᔅᓱᒪᓂᐊᔪᑦ ᓇᒥᑐᐃᓐᓈᖃᑦᑕᕐᓯᒪᒻᒪᑕ (ᕇᕝᔅ ᐊᓯᖏᓪᓗ 1983), ᐃᑭᐅᖅᑕᖅᑐᓕᒫᐸᓗᑦᑎᐊᖅ ᐊᖃᕐᕕᑦᑕᖃᐅᖅᑐᓂ, ᐃᓚᐃᓐᓇᑯᓗᐊᑦ ᐅᓛᓵᓂᓗ ᐅᑭᐅᖅᑕᖅᑐᖅ ᐊᖃᕐᕕᑦᑕᖃᕋᓂ (COSEWIC 2009). ᒫᓐᓇ ᑎᓴᒪᕉᒻᒪᑕ ᐊᑐᓂᑦ ᑕᒫᓃᔅᓴᐃᓐᓈᖃᑎᒌᑉᐸᑦᑐᑦ ᑲᔮᕆᔭᓕᒫᒥ. ᑲᓇᓐᓇᖓᓂ ᑲᓇᑕᒥ-ᐱᖓᓐᓇᖓᓂ ᐊᑯᑭᑦᑐᑦ (EC-WG) ᑕᒫᓃᑉᐸᑦᑐᑦ ᐊᕐᕖᑦ ᐃᓱᒪᒋᔭᐅᓕᖅᑐᑦ ᑖᒃᑯᓴᐃᓐᓇᐅᓪᓗᑎᒃ ᕽᑎᙵᐅᓲᖑᒻᒪᑕ ᒥᔅᓴᐅᓴᑦᑕᐅᓯᒪᒻᒪᑕ ᑲᓇᓐᓇᖓᓂ ᑲᓇᑕᒥ-ᐱᖓᓐᓇᖓᓂ ᐊᑯᑭᑦᑐᑦ ᐊᕐᕖᑦ ᐃᒪᓐᓇᐅᔭᕆᐊᔅᓴᖏᑕ 7,309 (95% CI = 3,161-16,900) ᑭᓯᐊᓂ ᐃᓱᒪᒋᔭᐅᑦᑐᑦ ነᒪᙱᒋᐊᔅᓴᖏᓐᓂᒃ ᐃᓚᐃᓐᓇᑯᓗᐊᓂᒃ ᐊᐅᔭᐅᓂᖓᓂ ᐊᒻᒪᓗ ᐃᒐᓕᖅᑑᖅ ᑲᓇᓐᓇᖓᓃᑦᑐᖅ ᐅᑭᐊᓯᕆᔭᕐᓂᕆᕙᑦᑕᖓ, ᐊᒃᑲᓐᓂᖓᑦ ᐅᑭᐊᓯᕆᔭᕐᓂᕆᕙᑦᑕᖓ (ᐊᒃ ᐊᓯᖏᓪᓗ 2008). ᐅᑭᐊᓯᕆᔭᕐᓂᕆᕙᑦᑕᖓ ᐃᑭᕋᓴᖓᓂ, ᐃᓕᓐᓂᖓᓂ ᐆᒪᔪᐃᑦ ᐅᑭᐊᓯᕆᔭᐃᕕᐅᓱᑎᒃ ᑲᓇᓐᓇᖓᓂ ᑲᓇᑕᒥ-ᐱᖓᓐᓇᖓᓂ ᐊᑯᑭᑦᑐᑦ ᐊᕐᕖᑦ ᐃᒪᓐᓇᐅᔭᕆᐊᔅᓴᖏᑕ 7,309 (95% CI = 3,161-16,900) ᑭᓯᐊᓂ ᐃᓱᒪᒋᔭᐅᑦᑐᑦ ነᒪᙱᒋᐊ旸ᓪᓗᒃ ᐃᓄᐃᑦ ᐃᓚᐅᓂᖏᑦ ᐊᒻᒪᓗ ᐅᑭᐊᓯᕆᔭᐃᕕᐅᓱᑎᒃ ᑲᓇᓐᓇᖓᓂ ᑲᓇᑕᒥ-ᐱᖓᓐᓇᖓᓂ ᐊᑯᑭᑦᑐᑦ ᐊᕐᕖᑦ ᐃᒪᓐᓇᐅᔭᕆᐊ旸ᓪᓗᒃ ᐃᓄᐃᑦ (ᐊᒃ ᐊᓯᖏᓪᓗ 2008).
summer around Somerset Island and in Eclipse Sound (Richard et al. 2010). Narwhals have been observed to travel in groups of one to fifty animals in the region with an average of three (Cosens and Dueck 1991) to three and a half (Marcoux et al. 2009) animals per group. Similar to beluga whales, Cosens and Dueck (1991) noted that narwhal group size varied with ice type with the largest groups being seen later in break up within cracks in the ice.

Potential threats to the Baffin Bay narwhal include the commercial fishery for Greenland halibut in Baffin Bay (DFO 1998; Heide-Jørgensen et al. 2003; Laidre et al. 2004b), noise pollution and shipping traffic (Cosens and Dueck 1993; Cosens 1995), contaminations (Muir et al. 1992; Wagemann et al. 1996), climate change related to preferred habitat (Heide-Jørgensen et al. 2003; Laidre et al. 2004a), ice entrapments related to changing ice conditions (Laidre and Heide-Jørgensen 2005a), seasonal prey intake, small number of prey species (Laidre et al 2005b), and potential increase for predation by killer whales (Higdon 2007).

Bowhead (Balaena mysticetus)
The bowhead whale is the largest cetacean inhabiting Arctic waters. It has a broad distribution, similar to its pre-decimated historic range (Reeves et al. 1983), which is nearly circumpolar in nature, with only portions of the Canadian and Russian Arctic not inhabited (COSEWIC 2009). There are currently four populations worldwide. The Eastern Canada-West Greenland (EC-WG) population was previously considered two separate stocks called the Davis Strait-Baffin Bay stock and the Foxe Basin-Hudson Bay stock, and is now considered one population based on genetic data, tracking data, and age and sex distribution (Heide-Jørgensen et al. 2008). This population was designated ‘Special Concern’ by COSEWIC in 2009, a downgrade, or positive update, from ‘Endangered’ in 1980 and ‘Threatened’ in 2005 (COSEWIC 2009).

The EC-WG population has a broad summer distribution and is known to summer in northern Hudson Bay and Foxe Basin, along the eastern coast of Baffin Island, and south of Lancaster Sound in Pond Inlet, Eclipse Sound, Navy Board Inlet, Admiralty Inlet, Prince Regent Inlet, and the Gulf of Boothia. This population is known to winter in Hudson Strait (Koski et al. 2006), northern Hudson Bay, the mouth of Cumberland Sound, and along the pack ice edge in Davis Strait (Dueck et al. 2006). Hudson Straight is thought to have the largest proportion of the population in winter (Koski et al. 2006).

Bowhead whale migration is known to be closely associated with changes in sea ice (NWMB 2000). Bowheads follow the receding ice in spring and move into the Lancaster region from the east and west side of Baffin Island either through Baffin Bay, via the coast of Baffin Island (Dueck et al. 2006) or the west coast of Greenland and the North Water polynya (Heide-Jørgensen et al. 2003b) on the east, or the Gulf of Boothia via Fury and Hecla Strait from northern Foxe Basin (Dueck et al. 2006). Migratory periods have been suggested by satellite tracking studies to centre around April 3 for spring movements, July 22 to summering grounds and October 29 for peak movement back to wintering grounds for animals tagged in Canadian Arctic (Dueck et al. 2008). Tracking studies originating in West Greenland have seen similar migration timing with animals heading northwest for Lancaster Sound in May and on route south along Baffin Island in October (Heide-Jørgensen et al. 2006). Fall migrations occur in an easterly direction out of Lancaster Sound following Baffin Island south and in a southerly direction out of the Gulf of Boothia via Fury and Hecla Strait toward winter grounds (Dueck et al. 2008).

Seasonal distribution of the bowhead may be based on a number of factors including ice thickness and extent, bathymetry, prey distribution, predation, and costal features that provide shelter (Dueck et al,
Killer whale (Orcinus orca) (♀♂)

"Killer whale (Orcinus orca) (♀♂)

..."
Ferguson et al. (2010) found that bowhead whales prefer more ice in summer and less in winter based on seasonal ice availability. Prince Regent Inlet, specifically south of Creswell Bay, is thought to be a highly utilized area by bowhead in the summer season (Dueck et al. 2008), in addition to Isabella Bay on the east coast of Baffin Island (Finley 1990). In the spring, areas with heavy ice, relatively shallow waters and oceanographic features that provide a consistent food supply have been found to contain a large number of calves and cows and have been deemed calf ‘nurseries’. Such areas have been found in northern Foxe Basin (Cosens and Blouw 2003).

The most recent population estimate for the Eastern Canada-West Greenland population is 7,309 (95% CI = 3,161-16,900) but is considered imprecise as only a portion of known summer range was covered in one season (Cosens et al. 2005). It is a commonly held belief within Nunavut communities that the bowhead whale population is increasing due to hunting restrictions (NWMB 2000) however, this is not a shared conviction in Greenland (Reeves and Heide-Jørgensen 1996).

Threats to the EC-WG population include anthropogenic disturbance such as increases in frequency and distribution of large ships, offshore oil and gas development, tourism and small boat activity, noise and water pollution (including debris that can be ingested by skim feeding) and hunting (COSEWIC 2009; Finley 2001). Change in seasonal ice cover due to climate change is also a real threat to the bowhead whale with unknown effects on distribution (Ferguson et al. 2010), potential for increased ice entrapment in winter, and potential increase in predation by killer whales in winter and summer (Finley 2001; Mitchell and Reeves 1982). Calving grounds are particularly at risk with decreases in ice concentrations compared to other seasonal locations, movements and activities due to the likelihood that they are traditional and less flexible (Dueck and Ferguson 2008).

Killer whale (Orcinus orca)

The killer whale is found in all Canadian coastal waters and all oceans globally, making it the mostly widely distributed cetacean in the world (Higdon 2007). Killer whales are considered one species with separate populations (Forney and Wade 2007, COSEWIC 2008), although subspecies have been suggested for groups in the Antarctic (Pitman and Ensor 2003). There are currently five Designatable Units (DUs) of killer whales recognized in Canada based on genetics, movements and distribution, feeding behavior, and acoustic studies (COSEWIC 2008). One of these DU’s is the Northwestern Atlantic and Eastern Arctic. Although little scientific data is available on the presence of killer whales in the Canadian Arctic, the Northwest Atlantic/Eastern Arctic population is known to be found in the Canadian Arctic in the summer season. This population was designated ‘Special Concern’ by COSEWIC in 2008 due to its perceived small population size, life history parameters and social characteristics (COSEWIC 2008).

Satellite tracking studies of two whales tagged in Admiralty Inlet in August of 2009 showed summering and potential wintering grounds. The killer whales were tracked moving from Admiralty Inlet into Prince Regent Inlet and the Gulf of Boothia in September and movement out of the region as the ice began to form, via Lancaster Sound, in mid October. One killer whale was tracked into mid November off the Azores, a historic whaling ground (Matthews et al. Accepted December 2010).

Historic and recent sightings, and photographs, it is known that killer whales frequent waters of the Eastern Arctic, during the ice free season, where prey are plentiful. Killer whales are known to prey on belugas, narwhals, bowheads and seals (Westdal 2009; Higdon et al. Accepted November 2010). Killer whales are seen throughout the Lancaster region, generally in small pods and rarely solo (Westdal 2009). In Pond Inlet hunters have noted that killer whales are seen mainly in August, but have been seen at the floe edge in
Walrus (Odobenus rosmarus rosmarus) (COSEWIC 2008)

The walrus (Odobenus rosmarus rosmarus) (ᐃᓱᒫᓗᓇᖅᑐᑦ) is listed as Endangered by COSEWIC (2008). In Press (In Press) (2008), it was determined that walruses (Odobenus rosmarus) (ᐃᓱᒫᓗᓇᖅ) are currently listed as Endangered by COSEWIC (2008). Walruses are listed as Endangered by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (2008), and are listed as Threatened under the Species at Risk Act (SARA) in Canada (COSEWIC 2008). Walruses are also listed as Endangered by COSEWIC (2008), and as Endangered under the Canadian Species at Risk Act (SARA) in Canada (COSEWIC 2008). Walruses are also listed as Endangered under the Canadian Species at Risk Act (SARA) in Canada (COSEWIC 2008).

Polar Bear (Ursus maritimus) (COSEWIC 2002)

The polar bear (Ursus maritimus) (ᔪᒐᓪᓚᕆᐅᓲᖑᒻᒪᑦ) is listed as Endangered by COSEWIC (2002), and is listed as Threatened under the Species at Risk Act (SARA) in Canada (COSEWIC 2002). Polar bears are also listed as Endangered under the Canadian Species at Risk Act (SARA) in Canada (COSEWIC 2002). Polar bears are also listed as Endangered under the Canadian Species at Risk Act (SARA) in Canada (COSEWIC 2002).
June and July (Westdal 2010). In Arctic Bay, hunters and community members see killer whales in July, August and September. Killer whales are most often seen on the west side of Admiralty Inlet near Kakiak Point. In 2008 community members saw killer whales relatively close to the community for the first time; in Arctic Bay, Adams Sound and Strathcona Sound (Westdal 2009). Higdon (2007) notes that the highest number of killer whale sightings to date are from southwest Greenland and Lancaster Sound, with notable areas in the Lancaster region being in the Pond Inlet/Bylot Island area, Lancaster Sound, and Admiralty Inlet.

Killer whales have a historic presence in the eastern Arctic (Westdal 2009), but Inuit around Baffin Island and in Hudson Bay have reported sighting killer whales more frequently (Higdon 2007; Westdal 2009). It has been suggested that this could be due to changes in sea ice extent making areas more accessible for longer periods of time (Ferguson et al. 2010), as well as increased sighting effort and or a population increase (Higdon 2007). The number of individuals in the Northwest Atlantic/Eastern Arctic population is not known at this time (COSEWIC 2008) however, Young et al. (In Press) have identified fifty three individuals from recent photographs.

Threats to this killer whale population include contaminants and water pollution, ice entrapments, hunting, and noise and disturbance associated with increases in Arctic shipping (COSEWIC 2008).

Walrus (Odobenus rosmarus rosmarus)

The walrus is a long-lived species of the order pinnipedia. There are currently considered to be two subspecies globally, the Pacific and Atlantic walrus, with the latter inhabiting coastal waters off Canada, Greenland and Svalbard (NAMMCO 2004). The Atlantic walrus is further broken down into eight sub-populations (Born et al. 2001) with research suggesting that the subpopulations contain smaller discreet stocks (Outridge et al. 2003; Stewart 2008). Walrus inhabiting Lancaster Sound may be considered a separate stock as the Baffin Bay stock appears to be three discreet stocks consisting of Baffin Bay, West Jones Sound, and Penny Strait-Lancaster Sound (Stewart 2008). The Atlantic walrus was designated ‘Special Concern’ by COSEWIC in 2006 due to the lack of information on individual populations, small population size in some areas, and sustainability of the current hunt (COSEWIC 2006). It was previously examined as two populations with the Eastern Arctic designated as ‘Not at Risk’ in April 1987 and May 2000 and the Northwest Atlantic population designated as ‘Extirpated’ in April 1987 and May 2000.

Walrus are generally found in near-shore areas in summer that provide haul out locations and shallow waters (less than 100 m in depth) suitable for providing access to preferred prey items on the ocean floor (Outridge et al. 2003). Walrus are thought to return to the same haul out and feeding sites each year (DFO 2002). From harvest records it is known that walrus inhabit the areas of Pond, Milne, and Admiralty Inlets, Bathurst and Cornwallis Islands, and Jones Sound in the Lancaster area in summer (Priest and Usher 2004). Miller (1955) reported walrus being abundant throughout Lancaster Sound. Walrus depart the area as the ice begins to form in the fall and head to areas with open water and mobile ice. Koski and Davis (1980) observed the majority of migration activity to occur in mid-October. They are known to winter in a number of places in the Lancaster region; the east and west ends of Jones Sound (Cardigan Strait-Fram Sound and around Dundas Island), the west end of Devon Island (south of Grinnell Peninsula), the floe edge of Lancaster and Jones Sounds, and the North Water polynya (Born et al. 1995).

Threats to walrus in the area include pollution, loss of habitat including sea ice, fisheries that may affect prey habitat, noise disturbance, and physical disturbance. Walrus are especially sensitive to disturbance at haul out and feeding sites. Effects of Higdon (2007).
The document contains text in Inuktitut and English. The English text translates to:

Harp seal (Phoca groenlandica)

The harp seal is a species of seal native to the Arctic and sub-Arctic regions of the Northern Hemisphere. It is characterized by its large size, robust build, and distinctive coloration. The harp seal is a key species in the Arctic marine ecosystem, playing a role in the food web and serving as a primary prey for many predators, including polar bears and various sea birds. The species is listed as 'Data Deficient' on the IUCN Red List of Threatened Species, indicating that more research is needed to understand its conservation status. However, the harp seal population has been observed to decline in recent years, particularly in the Beaufort Sea and the Davis Strait, prompting concerns about its future.

Conservation Status:

The harp seal is listed as 'Data Deficient' on the IUCN Red List of Threatened Species (IUCN 2014). This classification indicates a lack of sufficient data to assess the species' conservation status, highlighting the need for further research. The harp seal's conservation status is closely tied to its large-scale population changes and habitat alterations, which continue to be crucial topics for ecological studies.

Biodiversity and Ecosystem Role:

The harp seal plays a significant role within the Arctic marine ecosystem, serving as both a prey species and a prey itself. Its diet consists primarily of fish, squid, and krill, and it is crucial to the food web of the Arctic seas. The harp seal's decline in population could have cascading effects on the ecosystem, impacting other species that rely on it for food.

Management and Protection Measures:

Efforts to manage and protect the harp seal population include habitat conservation, research into population dynamics, and monitoring programs. International cooperation is essential given the harp seal's range across multiple countries and maritime jurisdictions. These measures aim to ensure the long-term survival of the species and its ecosystem.

Current Threats:

The harp seal continues to face several threats, including climate change, which affects its habitat and food sources, and hunting, which remains a potential threat despite international bans. Climate change is particularly concerning as it alters sea ice patterns, affecting the seal's feeding grounds and breeding areas.

Future Research and Conservation Priority:

Future research should focus on understanding the causes behind the population decline, monitoring trends, and developing effective conservation strategies. Collaboration among scientists, governments, and stakeholders is crucial to address these challenges and ensure the long-term survival of the harp seal.
disturbance range from little to no effect, to temporary displacement, stampedes with assumed deaths (Born et al. 1995) and abandoning sites completely if continuously disturbed (DFO 2002).

Polar Bear (Ursus maritimus)

Polar bears have a circumpolar distribution, inhabiting all parts of the Arctic. Currently there are nineteen subpopulations worldwide with thirteen partially or completely in Canadian territory (Thiemann et al. 2008). The Lancaster Sound population inhabits the Lancaster region year round. Currently, the Canadian polar bear population is managed as one unit; however, Thiemann et al. (2008) suggest that polar bears can be considered in five separate designative units, based on geography and genetics. They suggest that bears do not all share the same conservation needs nor face the same threats throughout the Arctic and therefore, should be managed to reflect this. The polar bear was designated ‘Special Concern’ in Canada by COSEWIC in 2002 due to pollution concerns, slow reproductive rate, sustainability of the hunt, and climate change (COSEWIC 2002). The polar bear was previously designated as ‘Not at Risk’ in April 1986 but downgraded to ‘Special Concern’ in 1991, 1999.

In winter the Lancaster Sound region provides important habitat on shore and ice. Denning sites occur near the coast in the Lancaster area around Devon Island, on the north side of Lancaster Sound and the south side of Jones Sound (Stephenson and Hartwig 2010) with female bears exhibiting site fidelity to these areas. Females with newborn cubs have also been seen along the south coast of Lancaster Sound on the Brodeur Peninsula and Bylot Island (Schweinsburg et al. 1980). Preferred winter habitat for males and solo female polar bears in Lancaster Sound is in the western portion which is known to have high biological productivity (Welch et al 1992; Schweinsburg et al. 1982) and a higher density of ringed seals (Kingsley et al. 1985). Bears however, have been seen along both coasts of Lancaster Sound in winter (Schweinsburg et al. 1980). Satellite tracking studies have shown that polar bears in the archipelago and in Baffin Bay select first year ice in winter and multiyear ice in spring and fall during minimum ice extent (Ferguson et al. 2000).

In spring and summer, bears in Lancaster Sound are forced to move from east to west onto multiyear ice (COSEWIC 2002) or into bays with land fast ice (Schweinsburg et al. 1982) and onto land as the ice recedes. Ferguson et al. (2000) found that bears in the archipelago used land fast ice in spring and summer more than Baffin Bay bears, which seem to prefer pack ice. Schweinsburg and Lee (1982) had similar findings for bears tracked in Lancaster Sound. Ferguson et al. (2000) suggest that spring and summer preferred ice habitat is related to seal pupping in both areas. Summer areas of use in the Lancaster region include the south and east coasts of Devon Island, the east side of the Brodeur Peninsula, Borden Peninsula, and Bylot Island. The west side of the Brodeur Peninsula and the tip of Somerset Island are suspected to also be summering areas (Schweinsburg et al. 1980; Schweinsburg et al. 1982).

Threats to the polar bear include management of a sustainable harvest in the face of other changes, prey availability, environmental contaminants, human disturbance, and effects of climate change (COSEWIC 2002; Thiemann et al. 2008). Many papers have been written on the potential effects of climate change on marine mammals, including polar bears. Potential effects include change in distribution, increased energy output to travel to preferred habitat and locate prey, access and availability of prey, reproduction rate and success, and ultimately population size and future (Stirling and Derocher 1993; Tynan and DeMaster 1997; Derocher et al. 2004; Laidre et al. 2008; Wiig et al. 2008; Molnar et al. 2010). Laidre et al. (2008)
Bearded Seal (*Erignathus barbatus*) (IData)

Description

Erignathus barbatus is a large, thick-coated seal with a distinctive beard of long, bristly hairs on the lower jaw. Its fur is dark brown on the back and lighter on the belly. The bearded seal is abundant in the Bering Sea, the Chukchi Sea, and the eastern Beaufort Sea.

Habitat

These seals are known to inhabit the ice-covered waters of the Arctic Ocean, particularly in the Bering and Chukchi Seas. They are often found near ice floes and ice edges, where they feed on a variety of marine animals.

Reproduction

Bearded seals give birth to a single pup during the late spring or early summer. The pup is weaned around four to six months after birth. Females are polyoestrous, meaning they can be in estrus at different times throughout the year.

Threats

The bearded seal is listed as Least Concern by the International Union for Conservation of Nature (IUCN). However, they face threats from climate change, which affects their habitat, and from human activities such as oil and gas exploration and hunting.

Conservation

Multiple international agreements and conventions protect bearded seals. These include the Convention on Migratory Species (CMS), the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), and the North Pacific Marine Mammal Conservation Plan.

References

suggest that polar bears are one of the most sensitive marine mammals to climate change due to their reliance on sea ice and feeding habits.

Harp seal (Phoca groenlandica)

The harp seal is a medium-sized seal with a large population that migrates seasonally in pursuit of prey, namely cod. There are three populations globally with the northwest Atlantic population inhabiting the Arctic and the Lancaster Sound area in the summer season and off the coast of northern Newfoundland and southern Labrador and in the Gulf of St. Lawrence in the winter (DFO 2000). The harp seal is not listed as a species of concern with COSEWIC.

Harp seals arrive in small groups in the Arctic in early to mid-June, with large numbers appearing in July, and follow the receding fast ice edges into the Canadian archipelago (Finley et al. 1990). Migration route north from wintering grounds is thought to be along the east side of Davis Strait and Baffin Bay, following the coast of Greenland (DFO 1982). High density areas are known to be in Jones Sound, Lancaster Sound, Navy Board, Eclipse and Pond Inlets, and down the east coast of Baffin Island (DFO 1994). Late summer aerial surveys indicate that the largest numbers of harp seals in the archipelago are found along the coasts of Devon and Ellesmere Islands (INAC 1983). Hunters from Pond Inlet indicate that harvesting of harp seals occurs in the fjords along Navy Board Inlet and Eclipse Sound (Finley et al. 1990). Surveys of the Bylot Island area in 1954 found harp seals in large numbers at Guys Bight (at the mouth of Pond Inlet) and the north end of Navy Board Inlet. Seals are known to migrate in large numbers into Tay Sound, south of Eclipse Sound, from Navy Board Inlet and Pond Inlet (Miller 1955). Harp seals stay in the high Arctic in summer for approximately 100 days (Finley et al. 1990).

Migration south occurs in October as the ice begins to form (Finley et al. 1990; Miller 1955). Koski and Davis (1980) observed harp seal fall migration out of Lancaster Sound in both a southeast and northeast direction. Winter is spent off the east coast of Canada where breeding, whelping, and molting takes place on pack ice (Finley et al. 1990).

Threats to the harp seal population include changes in cod abundance and distribution, competition for food sources, and reduction in seasonal sea ice (Finley et al. 1990; Harwood 2001).

Bearded Seal (Erignathus barbatus)

Bearded seals are abundant in Hudson Strait, northern Hudson Bay and Foxe Basin. They are found throughout the Arctic archipelago in small numbers in summer (Finley 1983; Smith 1981), but are widely distributed in the Lancaster region (INAC 1985). In the Lancaster region they inhabit fjords in the summer months, mainly June through October (Finley 1983). High density areas are Lancaster Sound and the northern ends of Prince Regent, Admiralty and Navy Board Inlets (DFO 1994). Kingsley et al. (1985) suggest that bearded seals prefer broken ice and rotten annual ice within large floes. Moderate ice cover and waters of 100 m or less were also inferred as preferred habitat from aerial survey analysis (Kingsley et al. 1985). As bottom feeders, Koski and Davis (1980) suggest that distribution is partially based on water depths. Data from 1946 to 1954 shows bearded seals arriving at the Eclipse Sound ice edge prior to break up (six of the nine years) or within five days (Miller 1955). In September, surveys of Pond Inlet, Eclipse Sound and the Navy Board Inlet areas, found that Oliver Sound and Milne Inlet had the highest numbers of bearded seals (Koski and David 1980). During the ice free periods, namely August and September, bearded seals are found along the coast (INAC 1985). Bearded seals leave the area as fast ice begins to form to areas with moving pack ice. Bearded seals have been spotted in the North Water polynya in winter, but not in any large numbers (Finley and Renaud 1980).

As a species that is heavily dependent on ice for critical activities such as whelping, nursing, molting and resting, changes in sea ice due to climate...

Harbour Seal (Phoca Vitulina) (Phoca vitulina)*

Hooded Seal (Cystophora cristata) (Cystophora cristata)

Harbour Seal ($Phoca Vitulina$) (NAMMCO 2002).

Hooded Seal ($Cystophora cristata$) (Mansfield 1967).

In 2003, the Department of Fisheries and Oceans Canada (DFO 2003) conducted a study on the status of the Harbour Seal population in the Gulf of St. Lawrence. The study included an assessment of the population's size, distribution, and trends. The results indicated that the population had declined significantly over the past few decades due to various factors such as climate change, over-exploitation, and habitat loss. The study also highlighted the importance of protecting the habitat of the Harbour Seal to ensure the long-term survival of the species. The study was based on data collected from 1978 to 2003 and provided recommendations for future conservation efforts. The population size was estimated to be around 10,000 individuals in 2003, down from an estimated 15,000 individuals in 1978. The study concluded that the Harbour Seal population in the Gulf of St. Lawrence was stable and not at risk of extinction.
change may be a threat (COSEWIC 2002). Other threats to this species include physical or noise disruption due to their widespread but sparse distribution and vocalizations (Smith 1981) and removal and/or disturbance to offshore areas where the seals are feeding (Smith 1981; Harwood 2001).

Ringed Seal (*Phoca hispida*)
The ringed seal is a small seal with a widespread distribution in the Arctic north of 50° latitude (Reeves 1998; NAMMCO 2002). There is no genetic or tracking data to conclude that the global population is comprised of individual stocks, however, the North Atlantic Marine Mammal Commission (NAMMCO) recognizes three stocks based on distribution, one of which is in the Baffin Bay area which includes Lancaster Sound.

Ringed seals are commonly distributed throughout the Lancaster region in summer and winter (Miller 1955), although the western portion of the Lancaster Sound region is known to have a higher density of ringed seals than further west into the archipelago (Kingsley et al. 1985). Ringed seals rarely occur in large clusters (INAC 1985) and have been shown to move large distances. They have been recorded crossing Baffin Bay from Greenland into the Eastern Arctic (Kapel et al., 1998; Teilmann et al. 1999) and from the North Water polynya into the west end of Lancaster Sound and down the east side of Baffin Island (Teilmann et al. 1999).

Ringed seals are known to inhabit land fast and pack ice in the winter with preferred habitat that includes annual ice, with high ice cover, that is fast to the land over shallow waters (Kingsley 1985). Koski and Davis (1980) noted that ringed seal densities increased in Lancaster Sound in late September with the formation of new ice. Similar observations were made for Pond Inlet in mid-October. Areas, including many fjords in the region, with seasonal and continual cracks, that have potential for a higher abundance of prey, are known to have high densities of seals (Furgal 2002). Pupping is known to occur close to shore, on stable ice (Stephenson and Hartwig 2010) in late March or April (NAMMCO 2002). Bradstreet et al. (1982) noted in spring and early summer surveys in the Lancaster region that seals were in significantly higher densities within twenty four kilometers of the ice edge, rather than further away.

A rough estimate of the ringed seal population in the eastern Canadian Arctic and north Atlantic waters is 1.2 to 1.3 million (Kingsley 1998; NAMMCO 2002). Estimates are difficult due to a number of factors including birthing lairs under snow, and an unknown proportion of time spent on the ice or near the surface for detection.

Potential threats to the ringed seal include

- disruption to habitat by offshore activity and shipping, distribution and availability of prey, along with predicted changes in sea ice distribution and extent (Harwood 2001; NAMMCO 2002).

Harbour Seal (*Phoca vitulina*)
The harbour seal, also referred to as the common seal, is a small pinniped with a wide ranging distribution in the northern hemisphere (Mansfield 1967). There are five recognized subspecies of the harbour seal, with the western Atlantic subspecies present in the Arctic year round and found in the Lancaster Sound region.

Harbour seal distribution in the Lancaster Sound area is not well known. Their presence is considered to be rare in Lancaster region and along the east coast of Baffin Island (Stephenson and Hartwig 2010). The Nunavut Wildlife Harvest Study provides further indication of their absence in the region with no record of a harbour seal harvest north of eastern Baffin communities (Priest and Usher 2004). No harbour seals were recorded during aerial surveys of eastern Lancaster in 1978 and 1979 (INAC 1983), however, they have been recorded...
near Arctic Bay and Pond Inlet by hunters (Mansfield 1967). Harbour seals are known to travel in summer into estuaries and up rivers into fresh water (Mansfield 1967).

In the spring, females are known to form clusters along the shore where they have their pups (Mansfield 1967; Boness et al 2006). Harbour seals exhibit a high degree of site fidelity to pupping sites (Härkönen and Harding 2001) and are known to use a wide variety of habitats ranging from rocky shores to mudflats. In summer and winter, harbour seals prefer open water and the edge of the fast ice. They do not make breathing holes in the ice and thus are sparse throughout much of the Arctic archipelago in winter.

Hooded Seal (Cystophora cristata)
The hooded seal is a large migratory seal recognizable by its inflatable proboscis present in adult males. The hooded seal winters in Davis Strait and off the coast of Newfoundland and Labrador and summers in waters off the coasts of Denmark, Greenland and Canada (DFO 1985).

Most hooded seals migrate from Davis Strait and the Newfoundland/Labrador coast to west Greenland and Denmark in the summer, however, a small number is known to migrate north to Baffin Bay and Lancaster Sound (INAC 1983). The hooded seal is considered uncommon in the Lancaster and north Baffin Bay region (Koski 1980; Koski and Davis 1979). They have been seen in Pond Inlet and Eclipse Sound, however Miller (1955) reports that no more than three have been seen in a year. The hooded seal is known to feed in deep water and to prefer the open water and depths of Baffin Bay in summer (Stephensen and Hartwig 2010).

The total population that summers in the Arctic is not known, but a spring survey of the whelping patch in Davis Strait estimated 10,000 pups (DFO 1985).
Appendix D: References

Barber, D.G., Saczuk, E., and Richard, P.R. 2001. Examination of beluga-habitat relationships through the use of telemetry and a geographic information system. Arctic 54(3): 305-316.

Finley, K.J. 1990. Isabella Bay, Baffin Island: An Important Historical and Present-day Concentration Area for the Endangered Bowhead Whale (*Balaena mysticetus*) of the Eastern Canadian Arctic. Arctic 43(2): 137-152.

Jacobs, P. 1981. Perspectives on the Use and management of the Lancaster Sound Region. Published under the authority of the Minister of Indian Affairs and Northern Development.

This report was made possible with the assistance of Oceans North Canada (www.oceansnorth.ca) which provided support for the Qikiqtani Inuit Association’s consultation efforts and applied use of Inuit Qaujimajatuqangit for Lancaster Sound National Marine Conservation Area planning."